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Abstract Introduction

This paper proposes a new approach to force

balance structural optimization featuring a

computational experiment design. Currently. this

multi-dimensional design process requires the designer

to pertorm a simplification by executing parameter

studies on a small subset of design variables. This one-

factor-at-a-time approach varies a single variable while

holding all others at a constant level. Consequently,

subtle interactions among the design variables, which

can be exploited to achieve the design objectives, are

undetected. The proposed method combines Modern

Design of Experiments techniques to direct the

exploration of the multi-dimensional design space, and

a finite element analysis code to generate the

experimental data. To efficiently search for an

optimum combination of design variables and minimize

the computational resources, a sequential design

strategy was employed. Experimental results from the

optimization of a non-traditional force balance

measurement section are presented. An approach to

overcome the unique problems associated with the

simultaneous optimization of multiple response criteria

is described. A quantitative single-point design

procedure that reflects the designer's subjective

impression of the relative importance of various design

objectives, and a graphical multi-response optimization

procedure that provides further insights into available

tradeoffs among competing design objectives are
illustrated. The proposed method enhances the intuition

and experience of the designer by providing new

perspectives on the relationships between the design

variables and the competing design objectives

providing a systematic foundation for advancements in

structural design.
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Direct force and moment measurement of

aerodynamic loads is fundamental to wind tunnel

testing. Typically these measurements are made with
an instrument known as a force balance, which is

internally mounted in a scaled wind tunnel model (see

Figure 1). The lorce balance is a complex structural

spring element, which provides high-precision

measurements of the aerodynamic loads exerted on the

wind tunnel model, by measuring strain within its
flexural elements. This measured strain is then

converted into an electrical signal. Electrically

measured strain as a function of an externally applied

load forms the basic concept of force balance
measurements.

force balance 77 _]'

windtunnelmodel f_ 1' / ,1_1_

Figure I. Internally mounted force balance.

The balance flexural elements are designed such

that the magnitude of the strain, at strategic locations, is

the same for the individual application of each

component of load, even though the magnitudes of the

components are not equal. Therefore, the flexural
element stiffness must be simultaneously tuned with

respect to the component loads in six degrees of

freedom. An adequate balance design is achieved
through a combination of the structural design of

multiple flexural elements, and the strategic location of

the strain gages. Auxiliary factors must also be

considered by the balance design engineer including the
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complexityof fabrication,which is directly
proportionaltoboththeproductiontimeandcostofthe
forcetransducer.Ultimately,thephysicaldesignis
constrainedby theavailablespacewithinthewind
tunnelmodcl.

Currently,structuraloptimizationof the force
balancereliesheavilyontheexperienceandintuitionof
thebalancedesigner.Softwarebasedanalysisand
simulationtoolshavebeenintroducedinrecentyearsto
aidin thisprocess_,butthedecisionsregardingdesign
variablesaresolelydrivenby thebalancedesigner.
Thesedesignvariables(independentvariables)includc
themeasuringsectiondimensions,shape,location,and
straingageplacement.

Thequalityof thedesignis evaluatedbasedon
multiplecompetingresponsemetrics(dependent
variables)suchas:achievinganacceptablesensitivity
of the measurements,maximizingthe stiffness,
minimizingthe combinedstressintensity,and
minimizingthe fabricationcomplexity. Thereis
typicallyontheorderof20independentvariables,and
10 dependentvariables.Thegoal of this multi-
dimensionaldesignprocessis to find an optimum
combinationofthedesignvariablesthatcreatesthebest
overallperformanceof theresponsemetricswithinthe
constraints.

It isverydifficulttoreconciletheeffectsofsucha
largenumberofdesignvariablesonsomanycompeting
responsemetricsby conventionalone-factor-at-a-time
(OFAT)methods.In practicethebalanceengineer
typicallyuseshisintuitionto effectasimplificationof
theproblem.Thissimplificationis oftenachievedby
consideringonlyarelativelysmallsubsetofthedesign
variables,andfocusingprimarilyon a few of the
responsemetricsbelievedto bemostcritical.Evenin
thiscase,()FATmethodsmakeit difficultto resolve
potentiallyimportantinteractionsamongthedesign
variables.

Pastresearchin this areahas identifiedthe
structuraloptimizationof a forcebalanceas an
emergingareaofthreebalancedevelopment.Zhai"_and
othersidentifiedtheneedforoptimizingthestructureof
thebalancetoachievethedesiredhighsensitivity,low
interactions,and high stiffness. An empirical
algorithm,whichsimulatesbiologicalgrowth,was
combinedwith classicalfiniteelementanalysisto
developnewflexureshapes.Zhai_ and Parker4"5
highlightthebenefitsofastifferbalance,namelythatit
will raisethenaturalfrequencyof themodel,balance,
sting systemtherebyreducingundesirablemodel
vibration. Thedesirabilityof high sensitivity,or
flexibility,andhighstiffnessemphasizesthecompeting
criteria involved in the structuraloptimization.
Parametricstudiesof beamdimensionswereperformed

usinganOFATapproachtodevelopoptimumflexural
geometry.3An important finding of this eftort was that

only minor improvements are possible without

investigating new structures and shapes.

lterative gradient-based algorithms were applied in
Reference 6. In this effort, Hou and Twu identified thc

ability to automate the design of balance flexural

sections. The main goal of this work was to maximize

the sensitivity, while minimizing the stress intensity.

Once again, the competing nature of the criteria is

highlighted by the desire to have high stress levels in

the local vicinity of the strain gage, while minimizing

the stress globally over the flexural element.

Approach

This paper proposes the use of a computational

experimental design using Modern Design of

Experiments (MDOE) techniques combined with a

state-of-the-art finite-element analysis code to generate

the experimental data. The goal of the proposed

method is to efficiently move through the multi-
dimensional design space incorporating the competing

criteria Jbr the responses.

The proposed technique augments the intuition of

the designer by providing graphical insight to the

relationship between the design variables and the

response metrics. This insight differs from other

structural optimization methods that could be used such

as: genetic algorithms, neural networks, and gradient

search techniques. These methods search the design

space to find a maximum response location, but many

times do not provide vital information on why a

particular path through the design space was chosen. In
contrast, the current effort builds mathematical models

of a portion of the design space providing an

representation of its landscape. These m<xlels provide

the balance designer with the relative influence of the

design variables and valuable information about the

subtle interactions among them. Other optimization

methods commonly provide an answer without an

explanation, while the use of experimental design

techniques offers both an answer, an explanation, and

new insights to the balance design engineer.

A sequential design strategy was employed in order

to minimize the required number of computational runs,

thereby increasing computational efficiency. This

sequential strategy relies on lower order mathematical
models initially, that account for the main effects of the

design variables and the interactions among them.

These simple, initial models serve as a relatively low-

cost means of identifying efficient directions for further

experimentation. This strategy then involves an
increase in the order of fitted models in the more
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interestingregionsof responseextrema(maximumor

minimum responses.) Once an adequate model has

been generated, an optimization is performed to

determine the combination of design variables that

maximizes a weighted desirability function that

combines multiple response metrics.

Experimental Results

This section details an example of the optimization
of a force balance measurement section using the

proposed technique. A definition of the design and

response variables is provided followed by a discussion

of the experimental design and analysis, The final

process of using the derived mathematical model to

perform an optimization is presented.

Geometry Description

A typical six-component force balance used at

NASA Langley Research Center consists of three

measurement sections as shown in figure 2. These
measurement sections are the areas of concentration tk_r

the structural design. The center section is designed to

measure axial force, or drag. The two sections on either

side of the axial section are designed to measure the

other five components of" load and are referred to as the

cage sections. The term cage section comes from the

classical geometry of multiple rectangular flexures used

in this section creating a cage type structure. A parallel

system of rectangular flexures is used because it is

relatively easy to analyze, but does not necessarily

represent optimum geometry. In fact the sharp corners

of the rectangular flexures create locations of stress

concentration, especially duc to torsional loads. On

either side of the cage section are solid elements of the
balance structure, which are referred to as bulkheads.

These bulkheads are considered rigid compared to the
flexural elements of the measurement sections. The

balance moment center, which is a reference location

for the torque components, is typically defined to be at
the center of the axial measurement section, and

therefore the cage sections are symmetric about the
balance moment center.

Figure 2. Typical force balance measurement sections.

An advanced geometry cage section was selected

for optimization. As previously mentioned, minimizing

the number of flexures that comprise the cage section is

desirable from a manufacturing point of view: therefore

a single tlexural element was considered. It is believed

that a hollow elliptical cross section would be optimum.

For this experiment, the elliptical shape has been

approximated by an octagon with a hole in the center.

This approximation is due to manufacturing difficulty

of an elliptical beam. The design variables control the

volume, shape, contour, and location of the cage
section.

A generic octagonal cross section is shown in

figure 3a. The four linear dimensions of the cross
section, the diameter of the center hole. and the two

radii that provide a smooth transition between the sides

of the octagon represent seven of the design variables.

A side view of the flexural element is provided in figure

3b. In this figure, the location of the cage section with

respect to the balance moment center, the length of the

flexurc, and the symmetrical radii at the ends of the

flexure represent three additional design variables. A

summary of these ten design variables is provided in
Table I.

1_

t
SectionXX

(a) Octagonal cross section.

Figure 3. Design variables.
--.D-- X
[ Balance

_-F-_ MomentCenter--

#

----D_ X

(b) Side vicw of the flexurc.

Figure 3. concluded.
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Table

Design
Variable

A

B

C

D

E

F

G

H

J

K

1. Summary of the design variables

Description

location of cage section
minor width

minor height
overall width

overall height

length of llexure
hole diameter

radii at ends of flexure

lon_,iludinal radii along top of flexure

longitudinal radii along side of flexure

The response variables determine the quality of the

structural design of the force balance. As previously

mentioned, the goal is to maximize the sensitivity while

minimizing the structural deflection and overall stress

intensity. The four measurement sensitivities chosen

lot this experiment were normal force, pitching

moment, yawing moment and side lbrce as shown in

figure I. The strain gages used to measure these

components are located at the longitudinal centerline of
the flexure on the surfaces with the maximum distance

from the neutral axis with respect to the component of
load. The strain _oa,_e_locations are shown in figure 4.
The balance utilizes an electrical network of four strain

=a_cs,,",,' configured in a Wheatstone bridge arrangement.

In this experiment a single location was used to

determine the sensitivity due to the symmetric

placement of the four gages in the bridge. Furthermore,

this component measurement strategy uses the same

,,age to measure normal force as welt as pitching

moment. Normal force is measured by adding the

signals from the two symmetric cage sections (forward

and aft of the balance moment center) and pitching

moment is measured by subtracting the signals. The

)'awing moment and side force are measured in a

similar arrangement.

NF&PM --_

_._ _-- _._en iocation

Figure 4. Response measurement locations.

The rolling moment component, which would

typically be measured in the cage section, was not

included in this initial investigation lor the purpose of

simplification. The location of the strain gage for

rolling moment could be anywhere on the flexure
depending on the cross section. This would increase

the number of design variables to at least thirteen, and

add considerable complexity to the automated aspects

of the finite element solution and results interpretation.

Including rolling moment in future work would provide

a significant advantage over current methods.

Additional response variables were included that
were used to minimize the structural detlection and the

stress intensity. The structural deflection is measured at

a location forward of the cage section as shown in

figure 4. There are two response variables for the

deflection, one in the normal force plane and one in the

side force plane. It is desirable to minimize both of

these simultaneously. The stress intensity was

calculated by superposition of the maximum yon Mises

stress due to the application of the four components of

load under study (normal, pitch, yaw, and side). The
location of the maximum stress was not considered for

each flexure configuration, but intuitively it will be

located at the transition between the cage section and

the bulkheads. A summary of the response variables is
provided in Table II.

Table I1.

Response
Variable

NF_out

PM_oul

YM_oul

SF_out

zdisp

ydisp

maxstress

Summary of the response variables

Description

normal force sensitivity

pitching moment sensitivity

yawing moment sensitivity

side force sensitivity

displacement in the normal plane

displacement in the side plane
maximum Von-mises stress

To summarize the experiment parameters, there are

ten design variables (independent variables) and seven

response variables (dependent variables). We want to

obtain a mathematical model that enables the prediction

of the values for the response variables from a given

combination of the design variables. With this model

we are able to search through the design space to find
an optimum combination of design variables to achieve

the combined response objectives. The experimental

data required to generate the model was obtained using

a finite element analysis package described in the next
section.
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Solid Geometry Modeling and

Finite Element Analysis Description

changes in the flexure geometry without manual
intervention.

A parametric solid model was used to generate the

geometry for the finite clemenl analyses. The

representation of the torte balance was simplified to

minimize computational resources. The force balance

was longitudinally cut in half at the balance moment

center. All of the features except those necessary to

model the flexure boundary conditions, apply the loads,

and properly constrain the system were removed. The

simplified geometry is shown in figure 5. A table of

parameters that were specified by the experimental

design controlled the geometry. Each combination of

design variables was verified to ensure that it did not

violate the geometrical constraints. This process of
verification will be described in more detail in the next

section describing the experimental design.

Constrained surface

\
Cylindrical surface used

to apply the loads

Figure 5. Parametric solid geometry.

The finite element analysis (FEA) package used for

this experiment is based on p-element technology. P-

elements rely on a relatively coarse discretization of the

geometry using solid tetrahedral elements. Differing

from classical finite element analysis codes, the transfer

functions through these elements are high-order

polynomial functions. This type of FEA has the
desirable property of self-refining its ability to represent

steep stress intensity gradients found in geometry

transitions. In a classical FEA system the analyst must

manually refine the mesh in these areas of stress

concentrations. In a p-element code. the elements are

unchanged but the order of the polynomial transfer

function is iteratively increased up to order nine. This

is done internally during the iterative solution process

and does not require manual intervention. This type of

system was well suited for the task of generating the

experimental data since it was robust in handling large

Experiment Design and Analysis

This section describes the construction and analysis

of the experimental designs used to generate the

mathematical models of the design space. Factorial

experimental designs were used because they provide
an efficient means to determine the influence and

interaction among the design variables on the

responses. Even though this is a computational

experiment, the data is not without cost. Computational

resources and manual manipulation of the results are

required to obtain the data. and therefore the data

volume should be minimized. Factorial experiment

designs are well suited for this application.

In a classical one-factor-at-a-time approach, a

single design variable would be varied while holding all

other variables at a constant level. While this approach

is intuitive to the designer, it is inefficient and more

importantly could miss significant interactions among

the design variables. With the OFAT approach, it is

assumed that the effect of a single variable on the

responses is the same regardless of the level of the other

design variables. In real world situations, this is rarely

the case. Factorial designs vary all of the variables

simultaneously in a specified manner and enable the
determination of" the same main effi_cts derived from an

OFAT approach as well as significant interactions
between the variables.

A two-level factorial design was used initially.

These designs are useful in a broad array of

applications but they are limited in one important

respect: The fact that they feature only two levels of

each design variable means that response models

developed from data acquired with such designs can

only accommodate first-order and mixed first-order

terms. For example, in a two-variable, two-level

factorial design with factors A and B, it is possible to

develop response models featuring the linear A and B
terms and a second-order interaction term, AB. The

pure quadratic terms (A 2 and B2) cannot be quantified.

because this would require at least three levels of the

design variables.
A useful extension to the two-level factorial

design, accommodating full second-order response

mc_lels, is the Box-Wilson, or Central Composite

Design (CCD). A CCD for two variables is illustrated

in figure 6. The four data points comprising the square

are the two-level factorial design points and are referred

to as "corner points". They define all combinations of

the high and low levels of the two variables. There arc

also a number of "'center points" in this design that are
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replicatesof thevariablelevelsat thedesigncenter.
Finally,therearefour"axialpoints",alsoreferredtoas
"'starpoints",arrangedon theaxesof thevariable
coordinatesystem.A CCDfeaturesfivelevelsofeach
designvariable.

i

L_.

Factor A

Figure 6. Central Composite Design in two variables.

Although the description of the CCD has been
given in a two-variable case, the design extends readily

to any number of variables. While the details of the

CCD are beyond the scope of this paper, many

advantages flow from this design space geometry. The
reader is referred to References 7, 8, and 9 for more

details.

The first step in constructing the experimental

design was to select the range of the design variables.

The selection of the range proved to be a challenging

aspect of this experiment. This was due to the need of

choosing a wide enough range while simultaneously

ensuring that the geometrical constraints were fulfilled.

In general, to produce a useful model from an

experimental design, the design variables must be

varied over a large enough range to effect a meaningful

change in the responses. For the initial design, the

range was chosen to be as broad as possible. In

subsequent designs, as we moved toward a response

extrema, the range was narrowed.

Furthermore, the combination of design variables

was constrained due to the physical geometry that they

represent. An arbitrary combination of variable levels

could violate the physical geometry. For example, the

hole diameter must always be less than the overall

width or height of the flexure. If the diameter were

larger than one of these dimensions, it would cut

through the sides of the flexure and thereby produce

unacceptable geometry. Prior to executing the design,
all of the combinations of the design variables were

verified to ensure that the geometry was acceptable. [f

a particular combination was not acceptable then it was

slightly modified instead of adjusting the range and

generating a new design. Tailoring the design to meet

the geometrical constraints proved to be tedious and

somewhat limiting during the experimentation. The

ability to mathematically define the physical constraints

and build them into the experimental design is an area
of future research.

Three experimental designs were performed to

determine a final flexure design. The first experiment
involved the variables A, D. E, and F. These variables

control the volume and location of the flexure. The

goal of this first experiment was to define the center of

the design in the search space. The design center is

represented by a combination of variables that is near a

combined response extrema. For this first design, the

flexure was rectangular in shape. A tbur-variable full

factorial design consisting of 16 runs was performed.

The 16 geometries represented by this design are shown

in figure 7 (the lbrward portion of the balance has been

removed tbr clarity). Mathematical models consisting

of the main effects and two-way interactions were

derived. Using these models, the design center was

approximated for these four variables.

The second design included the other six design

variables that control the shape and contour of the

flexure. Depending on the level of the design variables,
the shape of the flexure was able to transition from a

rectangle to a thin-walled octagonal cross section. A

highly fractionated factorial design was executed to

minimize computational resources. With 10 design
variables, a full factorial would require 1024 runs. Not

only is this an excessive number of runs, but also it is

not necessary to derive an adequate model. A lull

factorial design in 10 variables allows for the resolution

of all possible interactions including the main effects,

two-way, three-way, and four-way, up to ten-way

interactions. While it is possible that there arc

significant two-way and three-way interactions, it is

unlikely that ten-way interactions would make a

significant contribution to the model.

Therefore, a fractionated design enabled fewer

experimental runs while giving up the capability to

determine some multiple factor interactions. The

consequence of a fractionated design is that some lower

order terms will be aliased with higher order terms,

thereby making it difficult to unambiguously resolve
the lower order terms. A 1/64 _h fraction of the full

factorial was executed requiring only 16 combinations

of the 10 design variables. The geometries represented

by these 16 combinations are shown in figure 8. The
mathematical models derived from these design were

then used to determine combinations of the design

variables that would fulfill the response criteria. The

analysis of this design revealed that it contained a

combined response extrema.
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Figure7. Fourvariabledesigngeometries.

Figure8. Tenvariablefractionalfactorialdesign geometries.
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Therefore,in thethirdandfinalexperiment,the
fractionatedfactorialdesignin 10 variableswas
augmentedto includeaxialandcenterpoints. This
augmentationcreateda hybrid form of a central
compositedesign.Thisdesigncombinedthe16runs
fromthe1/64'hfractionwith20axialpointsand10
centerpointsresultingin46 totalpoints.Therewere
nowfive levelsof eachof thedesignvariables.A
single center point geometry was used and then

simulated random errors were added to generate ten

replicates. The inclusion of axial and center points
enabled the determination of curvature in the math

model. Therefore, the use of higher order terms

increased the precision of the prediction and was

important for the optimization of the variable levels.

The geometries of the 21 additional points are shown in

figure 9.

__-- Center PointGeometry

Figure 9. Augmented factorial design geometries.

Desirability Function

One complication in an optimization problem that

features multiple response criteria is that the

combination of independent variables that optimizes the

design with respect to one response is not generally the

combination that optimizes il for another. Derringer
and Suich ]° developed the concept of a "desirability

function" to cope with such situations. The desirability

function is a single quantitative response index ranging

from 0 to I that approaches ! more closely as various

criteria specified by the designer are more closely met.

Desirability functions are computed lor each response

individually. Calculating the geometric mean of all the

individual functions then produces a single index. The

desirability function can identify a solution that consists

of some combination of independent variables that may

not perfectly optimize the performance of thc design

with respect to any of the individual responses of

interest, but which provides desirable performance for

all of the responses.

For example, assume that it is unacceptable if a

response level falls below some value, A, and that the

largest possible value between A and some goal value,
B, is desired. Assume further that any response greater

than or equal to B is equally acceptable. That is, we

assume that the designer feels that a given response has

to exceed the A level to be minimally acceptable and

the larger the better alter that, with all expectations met

if the response level is B or more. The desirability

function tor this response variable is created by a

translk_rmation mapping the range from A to B into a

8
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rangefrom0 to 1. ResponsevalueslessthanA are
assignedadesirabilityvalueof0,andthosegreaterthan
Bareassignedavalueof I. If thedesireistoachieve
thelargestpossiblevalueof theresponse,thevalueof
"B'"canbesettothelargestvalue of the response that

can be achieved within the full range of independent

variable settings.

Similarly, if response levels greater than some

value, B, are unacceptable, and the smallest possible

value between B and some minimal goal value, A, is

desired, and if any response as small or smaller than A

is equally acceptable, the desirability function is created

by a transformation mapping the range from A to B into
a range from 1 to 0. Response values greater than B are

assigned a desirability value of O, and those less than A

are assigned a value of 1. If the desire is to achieve the

smallest possible value of the response, the value of

"A" can be set to the smallest value of the response that
can be achieved within the full range of independent

variable settings.

It may simply be desirable tbr a particular response

to lie with some range of values between A and B. In

that case, the desirability function is given a value of 1

for responses between A and B and 0 for responses
outside this range.

It is often desirable that a particular response lies as

close to a specific target value as possible. In this case,

the desirability function is designed to have a value of I

at the target value and to approach zero as the response

varies from the target in either direction, becoming zero

when the response is unacceptably distant from the

target.

It is not necessary for the desirability function of a

specific response to vary linearly from 0 to I. A

weighting constant, w, can be applied that imparts to

the desirability function the designer's subjective

evaluation of its role in the overall optimization. For

example, the desirability function for a response to be

maximized in the range of A to B can be constructed to

have a value of 0 if the response is less than A, I if the

response is greater than B, and tot responses between A

and B, the desirability function can be described as
follows:

d,= S'-A)
B-A

/

where di is the desirability function for the i tj' response,

and w is a weighting constant that is smaller when

maximizing the response is relatively less important

and larger when maximizing the response is relatively
more important. Figure 10 shows how this function

changes as the response varies between A and B, for

various values of w. Similar weightings can be applied

for other objectives besides maximizing the response.

1.0

0.8

0.6

0.4

0.2

0,0

A B

Response value

Figure l(I. Desirability function

for a response to be maximized.

After desirability values are computed for each

response variable, they are combined into a single

desirability index, D, by calculating their geometric

mean. Further refinements to the weighting can be

applied by assigning a range of numbers (from I to 5,

say) to the importance of optimizing each response

variable. The final desirability index then is computed
as follows:

D-- d/_

\ J=J /

where v_ is a number indicating the relative importance

of the i 'h response, which might typically be an integer

in the range of I to 5, with 5 indicating the greatest

importance and 1 indicating the least.
In the present study, desirability functions were

developed tor the criteria that sensitivities for normal

force, side force, yaw moment, and pitch moment all

exceed 1000 microvolts per volt and be as large as

possible, while the deflection of the balance in the z and

y axis be minimized, and in any case less than 0.002

inches in the z axis and 0.005 inches in the y axis. The

maximum stress intensity was specified to be less than

75,000 pounds per square inch, and as small as

possible. Equal importance was assigned to all

response criteria (Vi=I for all i) and linear weightings

were applied (w=l.0 for all responses). Combinations

of the independent variables that maximized the grand

desirability function, D, were chosen as the starting

point for further refinements applied using graphical
optimization, as outlined in the next section.

9
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Graphical Optimization

The desirability functions are based on the

designer's subjective impression of the relative

importance of various design objectives, and can best

be thought of as a tool to achieve an approximately

optimum single-point design, Further refinements on

this initial design are possible using graphical

optimization techniques that offer the designer

additional insights into the tradeoffs among competing

optimization criteria, These methods result in a range

of independent variables throughout which all

responses satisfy certain minimal criteria.

In this study, an initial flexure design was

determined using desirability analysis as described

above. Special computer software was then used to

perform graphical optimization by exploiting the fact

that extrema in the various response variables have
associated with them closed contours of constant

response value. Even if such an extremum lies beyond

the range of independent variables considered, there

will often be open contours that enclose some region of

the design space bounded on one or more sides by a

design space boundary.

It is possible to define contours for each response

variable that correspond to some particular optimization

criterion. For example, the contours can be defined that

enclose all combinations of the independent variables

for which a given response exceeds some minimum

acceptable value or is less than some maximum

acceptable value. Pairs of contours can be selected to

bound combinations of independent variables for which

the response is within some prescribed range.

Overlaying such contours for different response criteria

reveal at a glance whether there is a non-null

intersection of all the criterion regions. If not, then it is

possible to see which criteria require the least relaxation

to achieve such an overlap. It is also possible to see

that a relatively inconsequential relaxation of one or

more criteria might dramatically increase the number of

combinations of independent variables that satisfy all

constraints. It could be quite beneficial to have a fairly
wide range of independent variables that meet all

response criteria, since certain combinations may be

easier to implement than others or less expensive.
Figure 11 is representative of a graphical optimization.

The area highlighted in gray indicates combinations of

the independent variables that satisfy all constraints.

This region is known colloquially as a "sweet spot".

and graphical optimization is therefore often described

informally as "'sweet spot analysis".

Once a region is defined by graphical optimization

within which all response criteria are satisfied, a

specific design point can be selected within this region

to maximize or minimize some other factor of interest.

For example, not all balance geometries that satisfy
performance goals will be equally easy to manufacture.

In such a case, the combination of geometric

parameters that minimizes the manufacturing

difficulties can be selected from within the region that

satisfies all performance requirements. Developing

such manufacturing cost functions is a next logical
extension of the optimization procedures described in

this paper.

0.600 __0-

0,500

0.450 t I I I

1.900 1.925 1.950 1.975 2.000

A [location of cage] (inches)

Figure I1. Graphical optimization.

In this case figure II illustrates design variable F

(length of the flexure) plotted versus variable A
(location of the flexure). To overcome the limitation of

not being able to plot all of the design variables

simultaneously, which would require a ten dimensional

plot, two are selected and all other variables are set to

the constant levels. The contour lines represent the

response criteria previously specified. The response
boundaries that border the sweet spot are the normal

force sensitivity, side force sensitivity, and the

maximum stress intensity. All other response criteria

are some distance from the boundaries of the sweet spot
indicating that they are not limiting metrics for this

particular combination of design variables. Any

combination of variable A and F lying within the sweet

spot will satisfy all of the specified criteria.

Based on this graphical optimization, the final

flexure geometry was selected and is illustrated in

figure 12 (only the flexure is shown lbr clarity). A

combination of design variables in the upper left corner

of the sweet spot was selected because that area

represents the minimum stress intensity, while

satisfying the sensitivity requirements. A finite element

analysis was performed on the resulting geometry and
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wascomparedto thepredictionof themathematical
modelsderivedfromtheexperimentaldesign.The
comparisonis providedin Table1II. All of the
predictedvaluesfallwithinthe99c_predictionintervals
of the model,exceptfor the predictionof the
displacementin they-axis,whichisslightlyoutsidethe
interval. This level of agreernentbetweenthe
predictionandtheactualFEAsolutiondemonstratesthe
usefulnessof themalhematicalmodelsfor searching
throughthedesignspace.

// ,\

/" j

\\,,/ /
_ flexure cross section

Figure 12. Final flexure geometry.

Table III. Predicted responses and FEA results.

Response Response Model
Variables Prediction FEA solution

NF_out

PMout

YM_oul

SF_out

zdisp

ydisp

max_stress

1004 _V/V

]080 _.VN
1091 pVN

i(v08pvrv
1.96E-03 inches

982 gV/V

1052 laY/V,

1152 pV/V

1073 [aV/V
1199E-03 inches

3.33E-03 inches 3.86E-03 inches

73,457 psi 74,72(/psi

Concluding Remarks

A proposed method for perlorming a structural

optimization of a force balance using a computational

experiment design has been presented. An example

optimization of a force balance measurement section

has been illustrated demonstrating the feasibility of

using this new method.

The powerful insights that are provided to the

balance design engineer using graphical optimization

analysis cannot be over emphasized. This graphical

optimization tool enhances the intuition and experience

of the designer regarding design tradeoffs and limiting
boundaries created by the response criteria. Also, this

type of analysis provides the balance designer with vital

inlormation regarding the complex, and often times

subtle, underlying relationships between the design

variables and the responses metrics.
There exists considerable interest in an automated

balance design system. The proposed method is well

suited lot an automated system by relying on objective

design decisions. In order to automate this method the

experimental design and analysis software would need

to be integrated with the solid modeling and finite

element analysis software. While there are significant

benefits to an automated system, the cost of software

integration would need to be justified.

The proposed method can lead to the optimization

of current geometrical structural designs and can also
be used to generate advanced geoinetry. The technique

can be extended to include other structural design

requirements such as dynamic response, which would

combine the response metrics of stiffness and mass.

Non-traditional response metrics could also be

considered including manufacturing time and cost.

While this paper focused on a specific structural

optimization application, similar response metrics are

commonly found in a broad array of structural

optimization applications.
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